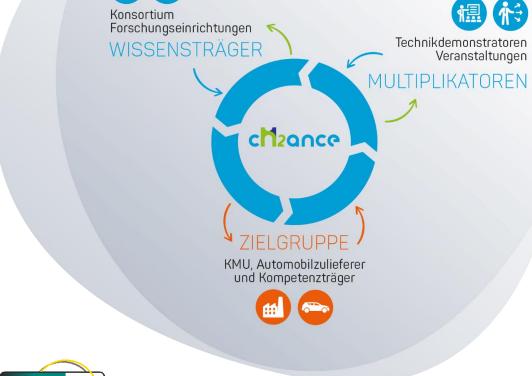


Gefördert durch:



aufgrund eines Beschlusses des Deutschen Bundestages

#### automotiveland.nrw und cH2ance Handlungsfelder und Netzwerke






**12.03.2024** Kulturwerk, Wissen









### automotiveland.nrw - Unsere Handlungsfelder

#### **Vernetzung und Dialog**

Wir vernetzen Unternehmen, Forschung und Politik zu den zentralen Themenfeldern der Zukunftsmobilität

## Trendanalyse und Branchenmonitoring

Wir analysieren die internationalen Trends der Transformation und beauftragen Studien

## Fachgruppen industrierelevanten Themen

Wir organisieren Arbeitskreistreffen und thematische Workshops

#### Politikdialoge

Wir vertreten die Interessen der Zulieferindustrie in Gesprächsrunden mit politischen Entscheidungsträgern

#### Veranstaltungsorganisation

Wir sind präsent auf Veranstaltungen, Messen und Kongressen.

#### **Projektentwicklung**

Wir gestalten die Transformation durch Projekte.

#### automotiveland.nrw - Unsere Arbeitsweise



















### cH2ance | Projekt- und Förderhintergrund

Gesamtförderkonzept des BMWK (früher BMWE) zur digitalen und nachhaltigen Transformation der Automobilindustrie

Zukunftsfond Automobilindustrie:

1 Milliarde Euro

Regionale
Transformationsnetzwerke

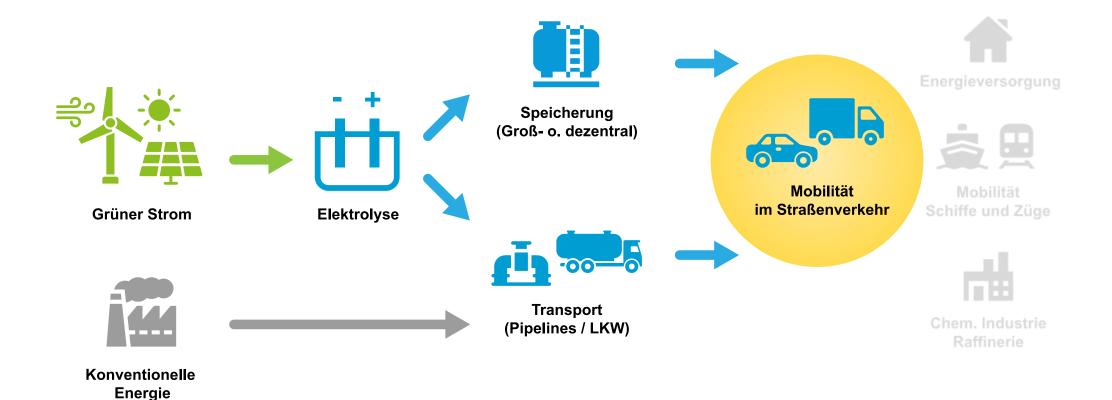
Thematische Transformationshubs

Transformationsprojekte

Weitere FuE Projekte

Konjunkturpaket 35c für die Automobilindustrie:

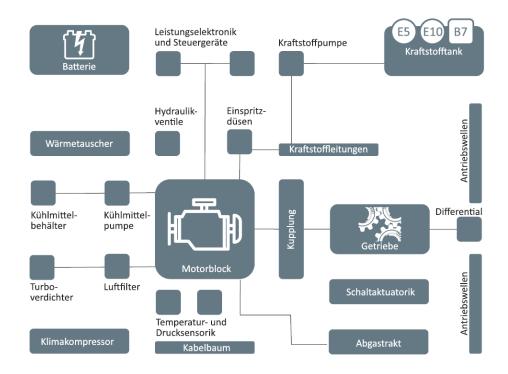
2 Milliarden Euro


Modul A: Modernisierung der Produktion

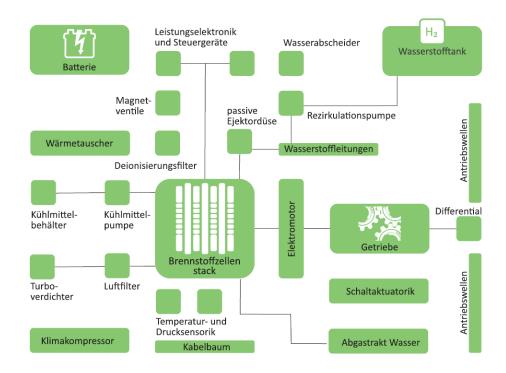
Modul B: Forschung und Entwicklung

Modul C: Regionale Innovationscluster




### cH2ance | H2-Wertschöpfungskette






### Adaption an neue Wertschöpfungsketten

#### Verbrennerantrieb



#### **Brennstoffzellenantrieb**





### Komponentenübersicht Wasserstofffahrzeug

#### Zellkomponenten



- Polymerelektrolytmembran
- Elektroden
- Gasdiffusionsanlage
- Subgasket Rahmen
- Dichtungen
- Bipolarplatten

#### Stackkomponenten



- Stromabnehmerplatte
- Isolierungen
- Endplatten
- Medienanschlüsse
- Dichtungen
- Zuganker oder Spannbänder
- Federsystem

#### Systemkomponenten



- Brennstoffzellenstack
- Manifold Modul
- Kühlmittelpumpe
- Luftverdichter
- Überdruckventil
- Druck- und Temperatursensorik
- Wasserstofffilter
- Wasserstoffrezirkulationspumpe
- Wasserabscheider
- Wasserstoffverrohrung und anschlusssysteme

#### Antriebskomponenten



- Wasserstofftanksystem
- Batteriesystem
- Elektromotor
- Getriebesystem
- Leistungselektronik, Kabelbaum und Steuergeräte
- Brennstoffzellensystem
- Abgasanlage



### cH2ance | Kompetenzen

Verfahren)

### Fertigungs- und Produktkompetenzen eines FCEV (1)





### cH2ance | Kompetenzen

### Fertigungs- und Produktkompetenzen eines FCEV (2)





# cH2ance | Kompetenzen Oberflächentechnik

Schulung für Oberflächentechnik vom ZBT/Duisburg geplant!

| Oberflächentechnik               | Einsatzmöglichkeiten                                                                                                                                              |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical Vapour Deposition (PVD) | Beschichtung von Bipolarplatten zur Verbesserung der elektrischen Leitfähigkeit und Korrosionsbeständigkeit                                                       |
| Chemical Vapour Deposition (CVD) | Ähnlich wie PVD für die Beschichtung von Bipolarplatten, um deren Leistung und Haltbarkeit<br>zu erhöhen                                                          |
| Nitrieren                        | Verbesserung der Oberflächenhärte und chemischen Beständigkeit von Bipolarplatten                                                                                 |
| Galvanisches Beschichten         | Aufbringen von Katalysatormaterial (z.B. Platin) auf die Membran-Elektroden-Einheit (MEA)                                                                         |
| Siebdruck                        | Präzise Applikation der katalytischen Schicht auf MEA und andere Komponenten                                                                                      |
| Sprühbeschichtung                | Anwendung auf verschiedenen Bauteilen, besonders wenn eine gleichmäßige Beschichtung über große Flächen oder auf unregelmäßig geformten Oberflächen benötigt wird |
| Schlitzdüsenbeschichtung         | Gleichmäßige und präzise Beschichtung von Substraten, wie beim Kohlenstoffsubstrat der MEA                                                                        |



### cH2ance | Angebote des Hubs

### Systemverständnis und Schnittstellentransparenz

- Workshops
- Schulungen



- Rechtlicher Rahmen
- Normen und Standards
- Zertifizierung







- Factsheets State of the Art
- Interaktive Apps
- Transferplattform

#### Großveranstaltungen

- Kongress d.
   Wasserstoffantriebe
- Heavy Duty Kongress



### Vernetzung und Austausch

- B2B-Matchmakings
- Info- und Netzwerktreffen
- Expertengruppen



#### Projektentwicklung



- Konsortialbildung
- Fördermittelakquise





### cH2ance - Expertengruppen BZ-System

#### Tanksystem

- Dichtheit
- Materialkorrosion
- Größenreduktion (Bauraum Fahrzeug)
- · Leitungssysteme

#### Anodenmanagement

- H2-Versorgungssystem
- Rezirkulation (aktiv/passiv)
- Wasserabscheidung
- Restfeuchte
- H2-Reinheit

#### **BZ-Stack**

- MEA-Optimierung
- Materialsubstitution
- Fertigungsverfahren
- Betriebsparameter
- Leistungsdichte / Effizienz
- Systemintegration und Platzbedarf

#### Kathodenmanagement

- Umsetzungsvarianten (Komponenten)
- Feuchtemanagement
- Betriebsparameter (Druck, Temperatur, Massenstrom)



#### Thermomanagement

- Optimierung Kühlmittelkreislauf
- Wärmerückgewinnung
- Kühlerdimensionierung



- Regelungsoptimierung
- Motor Control Unit (MCU)
- · Start- und Stoppverhalten

http://www.ch2ance.de/



### cH2ance | Ausblick & Termine





automotiveland.nrw =ZBT AMZ





Gefördert durch:



aufgrund eines Beschlusses des Deutschen Bundestages



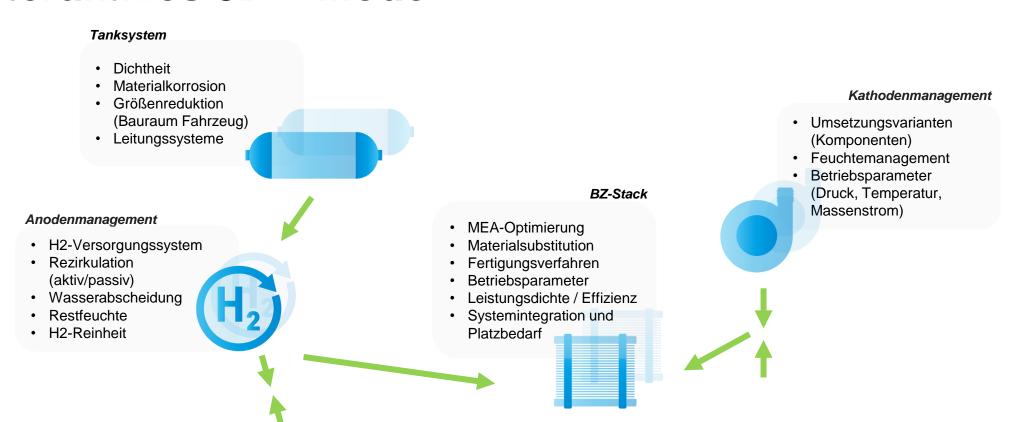
### **Ihre Ansprechpartner:**



Projektberater
Hans Releff Riege
+49 (0) 175 84 62 813
riege@automotiveland.nrw



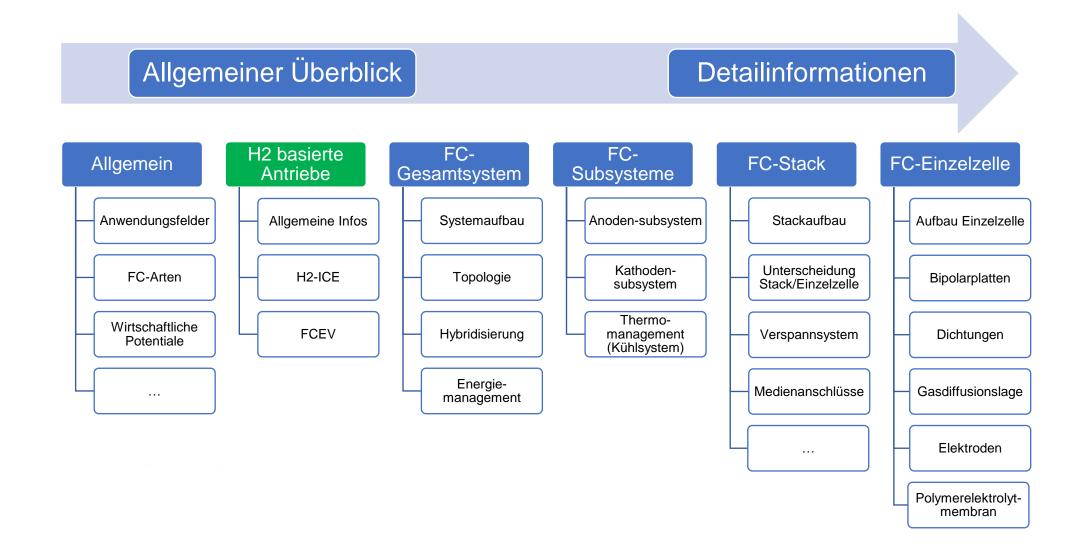
Projektleiter
Hanno Rademacher
+49 (0) 175 89 31 572
rademacher@automotiveland.nrw


Vielen Dank für Ihre Aufmerksamkeit!

# Back Up

www.automotiveland.nrw




#### Interaktives 3D – Modell



http://www.ch2ance.de/



### cH2ance | Factsheets State of the Art (SoA)





### H2-Mobilität – Vorteile & Herausforderungen

Vorteile

Emissionsfreier Betrieb

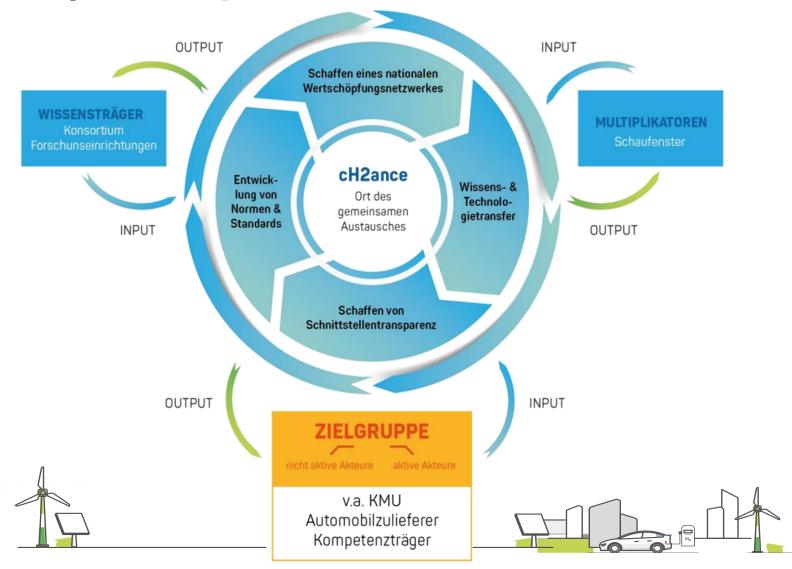
Keine Co2-Steuer

Schnelle Betankung

Lange Reichweite

Gewichtsersparnis

Wirkungsgrad


Infrastrukturausbau

Hohe Kosten (TCO)

Lagerung und Transport Herausforderungen



### cH2ance | Konzept & Wirkmechanismus





#### **Unser Werdegang 1/2**













#### Januar 2017

1. Bergischer Zukunftssalon Automotive Aufbau des Netzwerks

2017

#### November 2017

Grundlagenstudie veröffentlicht

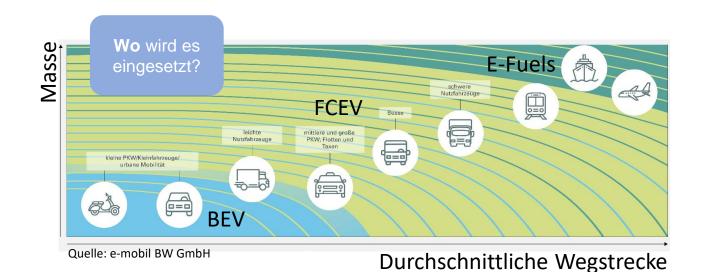
### **April 2019**

Gründung des Clusters

#### Herbst 2019

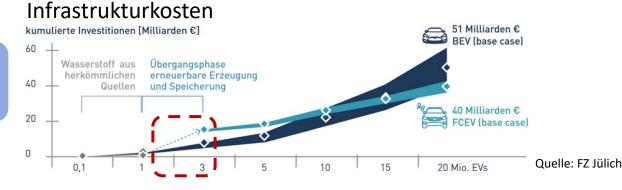
Start Verbundprojekte **Smart Mobility** 

#### August 2020


Förderung Kompetenznetz Mobilitätswirtschaft NRW

18.04.23 automotiveland.nrw




### Anwendungsszenarien H2-Mobilität

Überblick und Potenziale zu wasserstoffbasierten Antrieben





**Was** sind Entwicklungspotentiale?

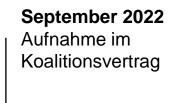




### **Unser Werdegang 2/2**


















Herbst 2022 Start von zwei BMWK geförderten Projekten Anfang 2023
Folgeförderung
Kompetenznetz
Automotive

des Landes Nordrhein-Westfaler

2023